50000#OtCnt %PC 0#EndCr 0.97n4 2n3 0n1 1gLxgLy hFFFFFF#PBClr 1#PGrSz 10#PFnSz
gS 0gC 0.97n4 1n3 180n1
0n1 0.01n3 :L20 N1gx 0gy gP N3ni1 1.25zN1<_G20_;@@@ YŽ²
0n2 0.01n3 :L21 0gx N2gy gP N3ni2 0.87zN2<_G21_;@@@ ZŽ²
-0.3n1 0.005n3 :L22 N1gx N1*2 =gy gP N3ni1 0zN1<_G22_; XŽ²
0n1 0.01n3 :L23 N1gx N1*-0.58 + 0=gy gP N3ni1 0.85zN1<_G23_;@@ ãx^2+y^2
-0.25n1 0.01n3 :L24 N1gx -0.5gy gP N3ni1 0.85zN1<_G24_;@@@@@y
-0.25n1 0.005n3 :L25 N1+1.1=gx N1*2 =gy gP N3ni1 0zN1<_G25_;@@ x
-0.47n2 0.01n3 :L26 0.85gx N2gy gP N3ni2 0.25zN2<_G26_;@@@@@z
0n1 0.01n3 :L27 N1gx N1*-0.58 + 0.73=gy gP N3ni1 0.85zN1<_G27_;@ãx^2+y^2ã
0n1 0.01n3 :L28 N1gx N1*0.275 + 0=gy gP N3ni1 0.85zN1<_G28_;@@ L
-0.25n1 0.01n3 :L29 N1gx N1*0.658 - 0.328=gy gP N3ni1 0.85zN1<_G29_;@ãy^2+z^2
0.85n1 0.01n3 :L30 N1gx N1*-0.95 + 1.04=gy gP N3ni1 1.1zN1<_G30_;@@ ãx^2+z^2
0.195n1 0.005n3 :L70 N1gx N1*1 - 0.18=gy gP N3ni1 0.25zN1<_G70_;@@ƒ¿–îˆó‰E
0.25n1 0.002n3 :L71 N1gx N1*-2 + 0.57=gy gP N3ni1 0.275zN1<_G71_;@ ƒ¿–îˆó¶
0.135n1 0.001n3 :L72 N1gx N1*-10 + 1.5=gy gP N3ni1 0.145zN1<_G72_;@ƒÁ–îˆó‰E
0.07n1 0.01n3 :L73 N1gx N1*-0.5 + 0.12=gy gP N3ni1 0.14zN1<_G73_;@ ƒÁ–îˆó¶
0.385n1 0.005n3 :L74 N1gx N1*-1 + 0.5=gy gP N3ni1 0.44zN1<_G74_;@@ƒÀ–îˆó‰E
0.365n1 0.002n3 :L75 N1gx N1*4 - 1.42=gy gP N3ni1 0.384zN1<_G75_;@ ƒÀ–îˆó¶
-0.15n1 0.02n3 :L42 0.5*N1s=n2*N1c + 0.0=gx N2*N1s- 0.2=gy gP N3ni1 0.82 zN1<_G42_;@Šp“xƒ¿
0.57n1 0.01n3 :L43 0.2*N1s=n2*N1c + 0.3=gx N2*N1s- 0.05=gy gP N3ni1 1.1zN1<_G43_;@@Šp“xƒÀ
0.94n1 0.01n3 :L44 0.3*N1s=n2*N1c + 0.0=gx N2*N1s- 0.15=gy gP N3ni1 1.58zN1<_G44_;@ Šp“xƒÁ
gE :: 9gC 0j;—§‘ÌÀ•W}‚P
12#PFnSz 0.1gx 1.2gy 0gJ 0j;O
10#PFnSz 0gC -0.1gx 0.1gy 0gJ 0j;ƒ¿
-0.02gx -0.051gy 0gJ 0j;ƒÀ
0.45gx 0.14gy 0gJ 0j;ƒÁ
0.05gx 0.285gy 0gJ 0j;L
0.55gx 0.3gy 0gJ 0j;x
-0.4gx -0.41gy 0gJ 0j;y
1.12gx -0.01gy 0gJ 0j;z
-0.12gx 0.8gy 0gJ 0j;xy
0.35gx -0.25gy 0gJ 0j;yz
0.41gx -0.04gy 0gJ 0j;xz
0.98gx 0.25gy 0gJ
5000#OtCnt E :E
cosƒ¿ = x/L@ cosƒÀ = y/L@ cosƒÁ = z/L
x^2 + y^2 + z^2 = L^2~[(cosƒ¿)^2 + (cosƒÀ)^2 + (cosƒÁ)^2 ]
y^2 + z^2 = x^2 + L^2 - 2xLcosƒ¿ = x^2 + L^2 - 2L^2~(cosƒ¿)^2
x^2 + z^2 = y^2 + L^2 - 2yLcosƒÀ = y^2 + L^2 - 2L^2~(cosƒÀ)^2
x^2 + y^2 = z^2 + L^2 - 2zLcosƒÁ = z^2 + L^2 - 2L^2~(cosƒÁ)^2
x^2 + y^2 + z^2 = 3L^2 - 2L^2~[(cosƒ¿)^2 + (cosƒÀ)^2 + (cosƒÁ)^2 ]
L^2~[ ] = 3L^2 - 2L^2[ ]@@@@ 3L^2~[ ] = 3L^2
(cosƒ¿)^2 + (cosƒÀ)^2 + (cosƒÁ)^2 = 1
3EAG1
[ 2007”N, 2009”N ]
@@@@
‘O‚̃y[ƒW
‚`‚s‚g‚oƒgƒbƒvƒy[ƒW