;’n‹…}

50000#OtCnt %PC 1gLx gLy hFFFFFF#PBClr gS 0gC 0.7n4 0.5n3 0n1
:L1 [1-N4D]/[1-(N4*N1cd)D]=r n2 *N1cd=gx N2*N1sd=gy gP N3ni1 360zN1<_G1_ ;@@@@@ ‘Θ‰~
0.7n4 2n3 90n1
:L2 [1-N4D]/[1-(N4*(N1+90)cd)D]*0.5=r n2 *N1cd=gx N2*N1sd=gy gP N3ni1 270zN1<_G2_ ;@‘Θ‰~‡™L_ƒΙ
-1.25n1 0.02n3 :L20 N1gx 0gy gP N3ni1 1.25zN1<_G20_ ; XŽ²
-0.9n2 0.02n3 :L21 0gx N2gy gP N3ni2 0.9zN2<_G21_ ;@ YŽ²
1.2n1 0.01n3 :L40 0.3*N1s=n2*N1c+0.65=gx N2*N1s+0.5=gy gP N3ni1 1.45 zN1<_G40_ ;@@ Šp“x‡™ƒΣ
0.9n1 0.01n3 :L41 0.3*N1s=n2*N1c - 0.05=gx N2*N1s - 0.18=gy gP N3ni1 1.15zN1<_G41_ ; Šp“xƒΣ
0.9n1 0.01n3 :L42 0.3*N1s=n2*N1c+0.25=gx N2*N1s - 0.18=gy gP N3ni1 1.3zN1<_G42_ ;@@Šp“xƒΣw
-0.25n1 0.005n3 :L22 N1+0.245=gx N1*1 + 0.25=gy gP N3ni1 0.7zN1<_G22_ ;@ ’nSόX
0.07n1 0.01n3 :L23 N1+0.25=gx N1*-1 + 0.91=gy gP N3ni1 0.58zN1<_G23_ ;@@’nSόY
0.044n1 0.002n3 :L24 N1+0.245=gx N1*2 - 0.08=gy gP N3ni1 0.48zN1<_G24_ ;@…€όX
-0.1n1 0.005n3 :L25 N1+0.25=gx N1*-0.5 + 0.75=gy gP N3ni1 0.75zN1<_G25_ ; …€όY
0n1 0.02n3 :L26 N1gx 0.58gy gP N3ni1 0.585zN1<_G26_ ;@@ P-y
0n2 0.02n3 :L27 0.585gx N2gy gP N3ni2 0.585zN2<_G27_ ;@@P-x
-0.65n1 0.005n3 :L28 N1gx 0.1gy gP N3ni1 -0.34zN1<_G28_ ; ‡™L_ƒΙ

-0.65n1 0.005n3 :L71 N1gx N1*0.5 + 0.43=gy gP N3ni1 -0.57zN1<_G71_ ;@ ‡™L_ƒΙ –ξˆσγ
-0.65n1 0.005n3 :L72 N1gx N1*-0.5 - 0.23=gy gP N3ni1 -0.57zN1<_G72_ ;@‡™L_ƒΙ –ξˆσ‰Ί
-0.42n1 0.005n3 :L73 N1gx N1*-0.5 - 0.07=gy gP N3ni1 -0.34zN1<_G73_ ;@‡™L_ƒΙ –ξˆσγ
-0.43n1 0.005n3 :L74 N1gx N1*0.5 + 0.27=gy gP N3ni1 -0.34zN1<_G74_ ;@ ‡™L_ƒΙ –ξˆσ‰Ί
-0.81n1 0.002n3 :L75 N1gx N1*2 + 1.98=gy gP N3ni1 -0.75zN1<_G75_ ;@@ ‡™ƒΣ –ξˆσ‰E
-0.87n1 0.002n3 :L76 N1gx N1*0.5 + 0.85=gy gP N3ni1 -0.75zN1<_G76_ ;@ ‡™ƒΣ –ξˆσΆ
-0.99n1 0.004n3 :L77 N1gx N1*1 + 1.1=gy gP N3ni1 -0.9zN1<_G77_ ;@@@ ‡™ƒΣ –ξˆσ‰E
-0.9999n1 0.001n3 :L78 N1gx N1*-8 - 7.79=gy gP N3ni1 -0.988zN1<_G78_ ; ‡™ƒΣ –ξˆσΆ

gE :: 0j;’n‹…
12#PFnSz 9gC -0.152gx 1.4gy 0gJ
10#PFnSz 0gC 5j;ƒΣ
0.12gx 0.145gy 5gJ 5j;ƒΣw
0.37gx 0.145gy 5gJ 0j;r
0.2gx 0.4gy 0gJ 0j;‡™ƒΣ
0.58gx 1.01gy 0gJ 0j;x
0.57gx 0gy 0gJ 0j;y
-0.1gx 0.65gy 0gJ 0j;a
1.05gx 0gy 0gJ 0j;b
-0.1gx 0.88gy 0gJ 0j;‡™L_ƒΣ
-1.4gx 0.4gy 0gJ 0j;‡™L_ƒΙ
-0.7gx 0.31gy 0gJ 0j;O
-0.08gx -0.01gy 0gJ 0j;N
-0.03gx 1.02gy 0gJ 0j;E
1.25gx 0.08gy 0gJ 0j;y=(tanƒΣ)x
0.85gx 0.84gy 0gJ
500#OtCnt E :E

@e = f/a = 0.081819
a^2 = b^2 + f^2 =@b^2 + (ea)^2
@b = aγ(1 - e^2)

a = 6378.14 K[m]
b = 6356.76 K[m]

x^2/a^2 + y^2/b^2 = 1@x = rcosƒΣ@y = rsinƒΣ
(rcosƒΣ)^2/a^2 + (rsinƒΣ)^2/[a^2(1 - e^2)] = 1
(1 - e^2)(cosƒΣ)^2 + (sinƒΣ)^2 = a^2(1 - e^2)/r^2
r^2 = a^2(1 - e^2)/[1 - (ecosƒΣ)^2]

r = aγ(1 - e^2)/γ[1 - (ecosƒΣ)^2]
@= aγ(1/e^2 - 1)/γ[1/e^2 - (cosƒΣ)^2]

x = aγ(1 - e^2)/γ[1 - (ecosƒΣ)^2]cosƒΣ
@= aγ(1 - e^2)/γ[1/(cosƒΣ)^2 - e^2]


‡™L_ƒΙ = x‡™ƒΙ
‡™L_ƒΣ ΰ r‡™ƒΣ

‡™L_ƒΣ( 1) ΰ 31 [m]

@x = acosƒΣ Λ@(acosƒΣ)^2/a^2 + y^2/b^2 = 1
y^2 = [1 - (cosƒΣ)^2]b^2@y^2 = bsinƒΣ
r^2 = x^2 + y^2
r^2 = (acosƒΣ)^2 + a^2(1 - e^2)(sinƒΣ)^2
@@= a^2 - a^2e^2(sinƒΣ)^2 = a^2[1 - (esinƒΣ)^2]
@r = aγ[1 - (esinƒΣ)^2]

L = aηγ[1 - (esinƒΣ)^2]dƒΣ
@= aeηγ[1/e^2 - (sinƒΣ)^2]dƒΣ

30.82 … ‡™L_ƒΣ( 1) … 30.92
‡™L_ƒΣ( 0‹` 90‹) = 10002Km
‡™L_ƒΣ( 0‹` 360‹) = 40008Km
‡™L_ƒΙ( 0‹` 360‹ƒΣ=0‹) = 40075Km

TiKyuUG

[ 2007”N, 2009”N ]


‘O‚Μƒy[ƒW ‚`‚s‚g‚oƒgƒbƒvƒy[ƒW